Dysregulation of vascular TRPM7 and annexin-1 is associated with endothelial dysfunction in inherited hypomagnesemia.
نویسندگان
چکیده
Inadequate magnesium intake and hypomagnesemia may contribute to chronic diseases, such as hypertension. The novel magnesium transporter TRPM7 is a critical regulator of magnesium homeostasis in vascular cells, but its role in pathophysiology is unclear. In a model of hypomagnesemia, we examined microvascular structure and function, TRPM7 expression, and vascular inflammatory status using inbred mice selected for normal-high intracellular magnesium levels or low intracellular magnesium levels (MgLs). Blood pressure was significantly increased in MgLs compared with normal-high intracellular magnesium levels. Pressurized myography of mesenteric resistance arteries showed that MgLs had significantly impaired endothelial function together with decreased plasma nitrate levels and endothelial NO synthase expression when compared with normal-high intracellular magnesium levels. Significant differences in vascular structure were also evident in both mesenteric arteries and aortas from MgLs. Aortas from MgLs had increased medial cross-sectional areas, whereas mesenteric arteries from MgLs had increased lumen diameters with increased medial cross-sectional areas, indicating outward hypertrophic remodeling. Expression of the magnesium transporter TRPM7 was significantly elevated in the vasculature of MgLs, whereas expression of a TRPM7 downstream target, the anti-inflammatory molecule annexin-1, was reduced. MgLs had increased expression of vascular cell adhesion molecule-1 and plasminogen activator inhibitor-1, indicating vascular inflammation. Taken together, these data demonstrate that the inherited magnesium status of MgLs and normal-high intracellular magnesium levels mice affects magnesium transporter expression, endothelial function, vascular structure, and inflammation. Our findings suggest a potential regulatory role for TRPM7 signaling in the maintenance of vascular integrity. Alterations in magnesium status and/or TRPM7 signaling may contribute to vascular injury in conditions associated with hypomagnesemia.
منابع مشابه
Transient Receptor Potential Melastatin 7 Cation Channel Kinase: New Player in Angiotensin II-Induced Hypertension.
Transient receptor potential melastatin 7 (TRPM7) is a bifunctional protein comprising a magnesium (Mg(2+))/cation channel and a kinase domain. We previously demonstrated that vasoactive agents regulate vascular TRPM7. Whether TRPM7 plays a role in the pathophysiology of hypertension and associated cardiovascular dysfunction is unknown. We studied TRPM7 kinase-deficient mice (TRPM7Δkinase; hete...
متن کاملInvolvement of TRPM7 calcium channels and PI3K/AKT kinase pathway in protective effect of vascular endothelial growth factor in amyloid beta-induced model of Alzheimer’s disease
Background and Objective: Alzheimer’s disease (AD) is a progressive neurodegenerative disorder, in which cortical and hippocampus neurons death is the main target of neurodegeneration. In addition to extracellular beta amyloid accumulation and the production of neural tangles, one of effective factors in the pathology of Alzheimer's disease is vascular injury in the elderly including disturbanc...
متن کاملSpironolactone Inhibits NADPH Oxidase-Mediated Oxidative Stress and Dysregulation of the Endothelial NO Synthase in Human Endothelial Cells
Accumulating evidence indicates that aldosterone plays a critical role in the mediation of oxidative stress and vascular damage. NADPH oxidase has been recognized as a major source of oxidative stress in vasculature. However, the relation between NADPH oxidase in aldosterone-mediated oxidative stress in endothelial cells remains to be ascertained. The present study aimed to investigate the rel...
متن کاملSpironolactone Inhibits NADPH Oxidase-Mediated Oxidative Stress and Dysregulation of the Endothelial NO Synthase in Human Endothelial Cells
Accumulating evidence indicates that aldosterone plays a critical role in the mediation of oxidative stress and vascular damage. NADPH oxidase has been recognized as a major source of oxidative stress in vasculature. However, the relation between NADPH oxidase in aldosterone-mediated oxidative stress in endothelial cells remains to be ascertained. The present study aimed to investigate the rel...
متن کاملDifferential regulation of transient receptor potential melastatin 6 and 7 cation channels by ANG II in vascular smooth muscle cells from spontaneously hypertensive rats.
Intracellular Mg2+ depletion has been implicated in vascular dysfunction in hypertension. We demonstrated that transient receptor potential melastatin 7 (TRPM7) cation channels mediate Mg2+ influx in VSMCs. Whether this plays a role in [Mg2+]i deficiency in hypertension is unclear. Here, we tested the hypothesis that downregulation of TRPM7 and its homologue TRPM6 is associated with reduced [Mg...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Hypertension
دوره 53 2 شماره
صفحات -
تاریخ انتشار 2009